Unit One: Geometric Tools: Points, Lines, Planes, Angles, Constructions (4 Weeks)

Big Ideas:

- Geometric figures, symbols and definitions
- Segment midpoints/bisectors and angle bisectors, and constructions: copy segment, midpoint, bisectors
- Angle pairs: vertical angles, complementary and supplementary angles
- Distance and midpoints in coordinate plane

Topics	Assessments	Standards
1) Students identify and model geometric terms with appropriate mathematical symbols and pictures.	1. Homework and in-class assignments	1. Know precise definitions of ray, angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc. (G.CO.1)
2) Students use an understanding of vertical, supplementary, and complementary angles to solve problems as well as midpoints and bisectors.	2. Quiz - definitions and geometric symbols, solving problems with angles and segments Quiz - Constructions	2. Use coordinates to prove simple geometric theorems algebraically. (G. GPE.4) 3. Make formal geometric constructions with a variety of
3) Students will be able to use formulas (distance, midpoint, and Pythagorean theorem)	3. Test	tools and methods (compass and straightedge, paper folding, dynamic geometric software). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the
4) Constructions of congruent segments and angles, midpoints, bisectors	Note: Split into Unit 1 part A and B. Part B includes conditional and	perpendicular bisector of a line segment. (G.CO.12) 4. Prove and apply theorems about lines and angles.
5) Students will be able to write two column algebraic proofs, and two column and paragraph proofs involving segments and angles. 6) Students will be able to solve systems of equations and three dimensional distance problems	Part B includes conditional and converses, algebraic proofs and proofs about segments and angles.	4. Prove and apply theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints Proofs should include paragraph, flowchart and two-column proofs. (G.CO.9)

Unit Two: Angle Pairs with Parallel Lines, Perpendicular Lines (3 Weeks)

Big Ideas:

- Use parallel lines with transversals to determine angle measures
- Determine whether lines are parallel, perpendicular or neither
- Graph parallel and perpendicular lines

Unit Three: Congruence - Transformations and Congruent Triangles (4 Weeks)

Big Ideas:

- Recognize and apply rigid transformations on the coordinate plane, and composite transformations
- Symmetry - line symmetry, rotational symmetry and point symmetry
- Congruence statements for polygons
- Prove triangles are congruent

	Topics
1)	Students will able to identify and apply transformations - reflections, rotations and translations.
2)	Students will be able to identify line and rotational symmetry.
3)	St

3) Students will be able to perform transformations using graph paper and software
4) Use vectors to apply translations; transformations of functions
5) Students will be able to interpret congruence statements and mark congruent parts on a diagram
6) Students will be able to prove triangles are congruent by SSS, SAS, ASA, AAS and HL.
7) Students will be able to prove that corresponding parts of triangles are congruent by first showing the triangles are congruent

Unit Four: Triangles (3 Weeks)

Big Ideas:

- Apply Triangle sum theorem and Exterior angles theorem
- Isosceles and equilateral triangle theorems, triangle inequality theorem
- Classify triangles on the coordinate plane

Topics	Assessments	Standards
1) Students identify and classify triangles by their angles and sides using the Triangle Sum Theorem when necessary 2) Students will be able to determine if 3 given lengths will make a triangle	1. Homework and in-class assignments 2. Quizzes 3. Test	1) Prove theorems about triangles: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. (G.CO.10)
3) Solve problems involving isosceles and equilateral triangles, construct equilateral triangles		2) Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. (G.CO.13)
4) Students will be able to classify a triangle on the Cartesian Coordinate system. Use slopes to determine right angles. 5) Construct an equilateral triangle, regular hexagon.		3) Use coordinates to prove simple geometric theorems algebraically and to verify geometric relationships, including properties of special triangles, quadrilaterals and cirlces.. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove that a triangle is scalene, isosceles or equilateral. (G.M2)
6) Understand how to find the circumcenter, incenter, centroid and orthocenter of triangles - construct and use their properties to solve problems (G.CO. 10 - medians meet at a point)		

Unit Five: Probability (2-3 Weeks)

Big Ideas:

- Understand and determine experimental and theoretical probabilities
- Use frequency tables and probability distributions
- Identify independent and dependent events and determine compound probabilities
- Understand and calculate conditional probabilities and determine if events are independent

Unit Six: Polygons - Quadrilaterals (3 Weeks)

Big Ideas:

- Apply theorems to find the sum of interior and exterior angles in polygons
- Classify special quadrilaterals by their specific names, including classification in the coordinate plane
- Solve problems using the properties of polygons

Topics	Assessments	Standards
1. Apply theorems to find the sum of interior and exterior angles in polygons 2. Prove and apply theorems about parallelograms. 3. Students will be able to identify and classify specific quadrilaterals and their properties, justifying classification using slope and distance in the coordinate plane 4. Students will be able to solve problems involving special quadrilaterals using the properties of each of the shapes 5. Students will find the perimeter and area of quadrilaterals in the coordinate plane	1. Homework and in-class assignments 2. Quizzes 3. Test	1. Prove and apply theorems about parallelograms. Theorems include opposite angles are congruent, opposite sides are congruent, diagonals of a parallelogram bisect each other. (G.CO.11) 2. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. 3. Classify two-dimensional figures in a hierarchy based on properties. (G.CO.14) 4. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles using Pythagorean theorem (distance formula). (G.GPE.7) 5. Use coordinates to prove simple geometric theorems algebraically and to verify geometric relationships, including properties of special triangles, quadrilaterals and cirlces.. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle. (G.M2)

Unit Seven: Similar Figures (3-4 Weeks)

Essential Questions:

- How can AA, SSS, and SAS be used to prove triangles are similar?
- What makes a transformation a similarity transformation?
- What is the relationship between a pre-image and the image resulting from a similarity transformation?

Unit Eight: Right Triangles: Pythagorean Theorem and Converse, Trigonometry (3 Weeks)

Essential Questions:

- How is the Pythagorean Theorem used in real world settings?
- How do trigonometric functions relate angle measure to side length of right triangles?

Unit Nine: Circles (3-4 Weeks)

Big Ideas:

- Understand and apply theorems about circles
- Use the relationships among inscribed angles, central angles, radii and chords to solve problems
- Apply the standard equation of a circle and graph circles

Topics		Assessments		Standards	
	Students will be able to identify parts of a circle and use		Homework and in-class assignments		Prove that all circles are similar. (G.C.1)
	relationships between the radius and the tangent line.		Quizzes	2)	Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed
2)	Students will be able to solve problems involving central and inscribed angles.		Test		angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.(G.C.2)
	Students will be able to find areas of sectors of circles and the lengths of arcs of a circle. Honors: understand and use Radians to find arc lengths			3)	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.(G.C.3)
4)	Students will be able to apply the standard equation of a circle and graph the circles.			4)	Find arc lengths and areas of sectors of circles. Apply similarity to relate the length of an arc intercepted by a central angle to the radius. Derive the formula for the area of a sector and use it to solve problems. (G.C.5)
	Students will complete the square to find the center and radius of a circle equation. Students will solve for missing angles in problems with chords, secants and tangents.			5)	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.(G.GPE.1)

Unit Ten: Area of 2D and 3D Figures and Volume of 3D Figures (3 Weeks)

Big Ideas:

- Understand and use formulas to find volumes of 3D figures
- Visualize relationships between 2D and 3D objects
- Identify cross-sections of 3D obects
- Understand the relationships between lengths, areas and volumes of similar figures

	Topics		Assessments		Standards
	Students will find areas and perimeters of geometric figures, including regular polygons		Homework and in-class assignments	1) Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. (G.GMD.1)	
2)	Students will be able to apply formulas to find volume of 3D geometric figures.	2)	Quizzes Test	2)	Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.
3)	Students will find the areas and volumes of similar figures	4)	Possible projects: - House/roof project - Polyhedron project - Landscape architecture project - Pool project	3)	Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.(G.GMD.3)
	Students will be able to explain how the formulas relate and how they were derived			4)	Identify the shapes of two-dimensional cross-sections of three- dimensional objects, and identify threedimensional objects generated by rotations of twodimensional objects.(G.GMD.4)
5)	Students will solve real world problems involving area and volume			5)	When figures are similar, apply scale factor k to a figure and understand its effect on lengths, areas and volumes.(G.GMD.6)
	volume Apply concepts to modeling situations, using density and geometric methods.			6)	Apply concepts of density based on area and volume in modeling situations, e.g., persons per square mile. (G.MG.2) Use geometric shapes, their measures and their properties to describe objects, e.g., modeling a tree trunk with a cylinder. (G.MG.3)

Honors Only Unit: Triangle Centers (1-2 Weeks)

Essential Questions:

- How is the Pythagorean Theorem used in real world settings?
- How do trigonometric functions relate angle measure to side length of right triangles?

Objectives	Assessments/Activities	Standards
1) Use perpendicular and angle bisectors to solve problems 2) Use triangle bisectors to solve real world problems 3) Find the points of concurrency of the bisectors, medians and altitudes of triangles	1) In-class group exploration with constructions 2) Homework 3) Quizlet review 4) Quiz	G.CO. 9 Prove and apply theorems about lines and angles. Theorems include but are not restricted to the following: points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints. G.CO. 10 Prove and apply theorems about triangles. Theorems include but are not restricted to the following: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point known as the centroid. G.C. 3 Construct angle bisectors and perpendicular bisectors and the inscribed and circumscribed circles of a triangle; Locate the incenter and circumcenter of a triangle.

