Unit One: Geometric Tools: Points, Lines, Planes, Angles, Constructions (4 Weeks)

Big Ideas:

**Honors Course Additions in Italics*

- Geometric figures, symbols and definitions
- Segment midpoints/bisectors and angle bisectors, and constructions: copy segment, midpoint, bisectors
- Angle pairs: vertical angles, complementary and supplementary angles
- Distance and midpoints in coordinate plane

	Topics	Assessments	Standards
1)	Students identify and model geometric terms with appropriate mathematical symbols and pictures.	1. Homework and in-class assignments	1. Know precise definitions of ray, angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line,
2)	Students use an understanding of vertical, supplementary, and complementary angles to solve problems as well as midpoints and	2. Quiz – definitions and geometric symbols, solving problems with angles and segments Quiz – Constructions	and distance around a circular arc. (G.CO.1)2. Use coordinates to prove simple geometric theorems algebraically. (G. GPE.4)
3)	bisectors. Students will be able to use formulas (distance, midpoint, and Pythagorean theorem)	3. Test	3. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, paper folding, dynamic geometric software). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the
4)	Constructions of congruent segments and angles, midpoints, bisectors	Note: Split into Unit 1 part A and B.	perpendicular bisector of a line segment. (G.CO.12)
5)	Students will be able to write two column algebraic proofs, and two column and paragraph proofs involving segments and angles.	Part B includes conditional and converses, algebraic proofs and proofs about segments and angles.	4. Prove and apply theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints
6)	Students will be able to solve systems of equations and three dimensional distance problems		Proofs should include paragraph, flowchart and two-column proofs. (G.CO.9)

Unit Two: Angle Pairs with Parallel Lines, Perpendicular Lines (3 Weeks)

- Use parallel lines with transversals to determine angle measures
- Determine whether lines are parallel, perpendicular or neither
- Graph parallel and perpendicular lines

	Topics	Assessments		Standards
1.	Students will be able to identify the	1. Homework and in-class	1.	Justify the slope criteria for parallel and
	angle pair relationships from	assignments		perpendicular lines and use them to solve
	parallel lines cut by a transversal			geometric problems (e.g., find the equation of
		2. Quiz – Identify angle pairs with		a line parallel or perpendicular to a given line
2.	Solve problems with angles in	parallel lines and a transversal,		that passes through a given point). (G.GPE.5)
	parallel lines	solve angle problems algebraically		
			2.	Make formal geometric constructions with a
3.	Students will be able to graph	3. Test		variety of tools and methods; constructing
	parallel and perpendicular lines and			perpendicular lines, including the
	write the equations of lines parallel			perpendicular bisector of a line segment; and
	or perpendicular to a given line.			constructing a line parallel to a given line
				through a point not on the line. (G.CO.12)
4.	Constructions of parallel and			
	perpendicular lines		3.	Prove theorems about lines and angles.
				Theorems include: vertical angles are
5.	Students will be able to prove lines			congruent; when a transversal crosses parallel
	are parallel			lines, alternate interior angles are congruent
	1			and corresponding angles are congruent;
6.	Relate to A.REI.5 from Alg 1 –			points on a perpendicular bisector of a line
	solving systems of equations			segment are exactly those equidistant from the
				segment's endpoints. (G.CO.9)

Unit Three: Congruence – Transformations and Congruent Triangles (4 Weeks)

- Recognize and apply rigid transformations on the coordinate plane, and composite transformations
- Symmetry line symmetry, rotational symmetry and point symmetry
- Congruence statements for polygons
- Prove triangles are congruent

Topics	Assessments	Standards
 Students will able to identify and apply transformations – reflections, rotations and translations. Students will be able to identify line and rotational symmetry. Students will be able to perform transformations using graph paper and software Use vectors to apply translations; transformations of functions Students will be able to interpret congruence statements and mark congruent parts on a diagram 	 Homework and in-class assignments Quiz – Transformations Test 	 Represent transformations in the plane using transparencies, and geo software. Describe them as functions that take points in the plane as inputs and give other points as outputs. (G.CO.2) Identify symmetries of a figure, which are the rotations and reflections that carry it onto itself. Identify figures that have line symmetry or rotational symmetry and use these to analyze shapes. (G.CO.3) Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines and line segments. (G.CO.4) Given a geometric figure and a rotations, reflection or translation, draw the transformed figure using graph paper, tracing paper or geom software. (G.CO.5). Use the definition of rigid motions to predict the effect of a
 6) Students will be able to prove triangles are congruent by SSS, SAS, ASA, AAS and HL. 7) Students will be able to prove that corresponding parts of triangles are congruent by first showing the triangles are congruent 		 given rigid motion. Given 2 figures, use definition of rigid motions to decide if they are congruent. (G.CO.6) 6) Use the definition of congruence in terms of rigid motions to show that 2 triangles are congruent if corresponding sides and angles are congruent. (G.CO.7) 7) Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. (G.CO.8)

Unit Four: Triangles (3 Weeks)

- Apply Triangle sum theorem and Exterior angles theorem
- Isosceles and equilateral triangle theorems, triangle inequality theorem
- Classify triangles on the coordinate plane

	Topics	Assessments	Standards
1)	Students identify and classify triangles by their angles and sides using the Triangle Sum Theorem when necessary	 Homework and in-class assignments Quizzes 	 Prove theorems about triangles: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the
2)	Students will be able to determine if 3 given lengths will make a triangle	3. Test	length; the medians of a triangle meet at a point. (G.CO.10)
3)	Solve problems involving isosceles and equilateral triangles, construct equilateral triangles		2) Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. (G.CO.13)
4)	Students will be able to classify a triangle on the Cartesian Coordinate system. Use slopes to determine right angles.		3) Use coordinates to prove simple geometric theorems algebraically and to verify geometric relationships, including properties of special triangles, quadrilaterals and cirlces For example, prove or disprove that a figure defined
5)	Construct an equilateral triangle, regular hexagon.		by four given points in the coordinate plane is a rectangle; prove that a triangle is scalene, isosceles or equilateral. (G.M2)
6)	Understand how to find the circumcenter, incenter, centroid and orthocenter of triangles – construct and use their properties to solve problems (G.CO.10 – medians meet at a point)		

Unit Five: Probability (2-3 Weeks)

- Understand and determine experimental and theoretical probabilities
- Use frequency tables and probability distributions
- Identify independent and dependent events and determine compound probabilities
- Understand and calculate conditional probabilities and determine if events are independent

Topics	Assessments	Standards
 Students will be able to use probability to make informed decisions 	 Homework and in- class assignments 	 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). (S.CP.1)
2. Understand the difference between theoretical and experimental probability	 Quizzes Test 	2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. (S.CP.2)
3. Apply Addition and Multiplication rules for probability		3. Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional prob.
4. Construct and interpret frequency tables		4. Construct/interpret two-way frequency tables of data when
5. Calculate conditional probability		classified. Use the table to decide if events are independent and to find conditional probabilities. (S.CP.4)
 Determine whether events are independent 		 5. Apply the Addition Rule, P(A or B) = P(A) + P(B) - P(A and B), and interpret the answer in terms of the model. (S.CP.7) 6. (+) Apply the general Multiplication Rule in a uniform probability model, and interpret the answer in terms of the model. (S.CP.8)

Unit Six: Polygons – Quadrilaterals (3 Weeks)

- Apply theorems to find the sum of interior and exterior angles in polygons
- Classify special quadrilaterals by their specific names, including classification in the coordinate plane
- Solve problems using the properties of polygons

Topics	Assessments	Standards
 Apply theorems to find the sum of interior and exterior angles in polygons Prove and apply theorems about parallelograms. 	 Homework and in-class assignments Quizzes 	 Prove and apply theorems about parallelograms. Theorems include opposite angles are congruent, opposite sides are congruent, diagonals of a parallelogram bisect each other. (G.CO.11)
3. Students will be able to identify and classify specific quadrilaterals and their properties, justifying classification using slope and distance in the coordinate plane	3. Test	 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. Classify two-dimensional figures in a hierarchy based on properties (G CO 14)
4. Students will be able to solve problems involving special quadrilaterals using the properties of each of the shapes		 4. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles using Pythagorean theorem (distance formula). (G.GPE.7)
 Students will find the perimeter and area or quadrilaterals in the coordinate plane 	f	5. Use coordinates to prove simple geometric theorems algebraically and to verify geometric relationships, including properties of special triangles, quadrilaterals and cirlces For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle. (G.M2)

Unit Seven: Similar Figures (3-4 Weeks)

Essential Questions:

- How can AA, SSS, and SAS be used to prove triangles are similar?
- What makes a transformation a similarity transformation?
- What is the relationship between a pre-image and the image resulting from a similarity transformation?

Objectives	Assessments/Acvities	Standards
 Students will be able to identify similar figures by using the AA, SSS, and SAS postulates. 	 Homework and in- class assignments Quizzes 	1) Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. (G.SRT.1)
 Students will be able to use ratios and proportions to solve similar figures. 	3) Test4) Use shadows and	2) Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the
 Students will be able to set up proportions based on similar figures to find missing lengths and areas 	similar right triangles to measure the heights of objects indirectly	 3) Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.(G.SRT.3) 4) Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two propertionally, and
 Students will be able to identify and apply dilations to geometric figures and understand that all circles are similar 	Key Vobaulary -	 5) Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. Use paragraph proof, flowchart proof and 2-column proofs. (G.SRT.5)
5) Students will be able to prove triangles are similar		6) Find the point on a directed line segment between two given points that partitions the segment in a given ratio. (G.GPE.6)

Unit Eight: Right Triangles: Pythagorean Theorem and Converse, Trigonometry (3 Weeks)

Essential Questions:

- How is the Pythagorean Theorem used in real world settings?
- How do trigonometric functions relate angle measure to side length of right triangles?

Objectives	Assessments/Activities	Standards
 Students will demonstrate an understanding of the Pythagorean Theorem and apply it to real-world problems, and identify Pythagorean triples 	 Homework and in-class assignments Desmos activity Quizzes/Test 	 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. (G.SRT.6)
2) Students will use the converse of the Pythagorean theorem to justify whether a triangle is a right triangle	 4) Performance Task: Use clinometer, tape measures to fjnd the height of real world 	2) Explain and use the relationship between the sine and cosine of complementary angles. (G.SRT.7)
 Students use trigonometric ratios to find sides of a right triangle, and solve real-world problems using 	objects indirectly	 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.(G.SRT.8)
 4) Students will be able to find missing angles in right triangles using the inverse trig functions (not an OST topic) 	Key Vocabulary: - Pythagorean Triple - Trig ratio - Sine - Cosine - Tangent	Standards focus on specific cases that excludes the use of inverse trig functions

Unit Nine: Circles (3-4 Weeks)

- Understand and apply theorems about circles
- Use the relationships among inscribed angles, central angles, radii and chords to solve problems
- Apply the standard equation of a circle and graph circles

Topics	Assessments	Standards
 Students will be able to identify parts of a circle and use 	1) Homework and in-class assignments	1) Prove that all circles are similar. (G.C.1)
relationships between the radius	E E	2) Identify and describe relationships among inscribed
and the tangent line.	2) Quizzes	angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed
 Students will be able to solve problems involving central and inscribed angles. 	3) Test	angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.(G.C.2)
 3) Students will be able to find areas of sectors of circles and the lengths of arcs of a circle. <i>Honors:</i> understand and use Radians to find arc lengths 		 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.(G.C.3)
4) Students will be able to apply the standard equation of a circle and graph the circles.		 4) Find arc lengths and areas of sectors of circles. Apply similarity to relate the length of an arc intercepted by a central angle to the radius. Derive the formula for the area of a sector and use it to solve problems. (G.C.5)
5) Students will complete the square to find the center and radius of a circle equation.		5) Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle
6) Students will solve for missing angles in problems with chords, secants and tangents.		given by an equation.(G.GPE.1)

Unit Ten: Area of 2D and 3D Figures and Volume of 3D Figures (3 Weeks)

- Understand and use formulas to find volumes of 3D figures
- Visualize relationships between 2D and 3D objects
- Identify cross-sections of 3D obects
- Understand the relationships between lengths, areas and volumes of similar figures

Topics	Assessments	Standards
 Students will find areas and perimeters of geometric figures, including regular polygons 	1) Homework and in-class assignments	 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. (G.GMD.1)
 Students will be able to apply formulas to find volume of 3D geometric figures. 	 Quizzes Test 	 Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.
3) Students will find the areas and volumes of similar figures	4) Possible projects:	 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.(G.GMD.3)
4) Students will be able to explain how the formulas relate and how they were derived	 House/roof project Polyhedron project Landscape architecture project Pool project 	 Identify the shapes of two-dimensional cross-sections of three- dimensional objects, and identify three- dimensional objects generated by rotations of two- dimensional objects.(G.GMD.4)
5) Students will solve real world problems involving area and volume		5) When figures are similar, apply scale factor k to a figure and understand its effect on lengths, areas and volumes.(G.GMD.6)
6) Apply concepts to modeling situations, using density and geometric methods.		 6) Apply concepts of density based on area and volume in modeling situations, e.g., persons per square mile. (G.MG.2) 7) Use geometric shapes, their measures and their properties to describe objects, e.g., modeling a tree trunk with a cylinder. (G.MG.3)

Honors Only Unit: Triangle Centers (1-2 Weeks)

Essential Questions:

- How is the Pythagorean Theorem used in real world settings?
- How do trigonometric functions relate angle measure to side length of right triangles?

Objectives	Assessments/Activities	Standards
1) Use perpendicular and angle bisectors to solve problems	 In-class group exploration with constructions 	G.CO.9 Prove and apply theorems about lines and angles. Theorems include but are not restricted to
 Use triangle bisectors to solve real world problems 	 Homework Ouizlet review 	the following: points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
 Find the points of concurrency of the bisectors, medians and altitudes of triangles 	4) Quiz	 G.CO.10 Prove and apply theorems about triangles. Theorems include but are not restricted to the following: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point known as the centroid. G.C.3 Construct angle bisectors and perpendicular bisectors and the inscribed and circumscribed circles of a triangle; Locate the incenter and circumcenter of a triangle.